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Abstract

A hybrid piezoelectric motor is investigated, which uses a longitudinal transducer and a tangential transducer to

generate the desired elliptical trajectories on the surface of the stator. In general, such a motor consists of one stator and

one rotor. The frequency at which it is driven is the resonance frequency of the tangential motion of the stator. For the

purpose of enlarging the micro displacement generated by the ultrasonic vibration and obtaining a large torque and a

higher efficiency, the resonance frequency of the longitudinal vibration and torsional vibration should coincide. However,

it is difficult to match these two resonance frequencies of the two transducers with an identical geometry size. In this paper,

a new prototype of a hybrid piezoelectric motor is proposed, in which two stators are used to increase the contact area

between the rotor and the stator. Besides, two adjusting rings are added to the stators to adjust the resonance frequencies

of both vibrations in such a way that they coincide. A theoretical model and a FE model are used to optimize the geometry

of the motor and to investigate the effects of matching the eigenfrequencies.

r 2006 Published by Elsevier Ltd.
1. Introduction

Since the hybrid piezoelectric motor has been first proposed in the 1980s, it attracts considerable attention
due to the properties, which are much better than the properties of traveling wave motors: it has a larger
output torque and a higher efficiency [1–3]. Unlike the traveling wave ultrasonic motor [4], this motor uses two
types of PZT transducers, one is the longitudinal transducer, which generates the longitudinal motion; the
other is the tangential transducer, which excites the torsional motion. For the case of a temporal phase shift
between the vibrations of these two transducers of 901, the surface points of the stator move on elliptic
trajectories [5].

In the past these hybrid piezoelectric motors were excited with a frequency, which corresponds to the
eigenfrequency of the torsional vibration mode. In order to obtain a larger output torque and a higher
ee front matter r 2006 Published by Elsevier Ltd.
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efficiency, not only the torsional mode should be driven in resonance but both transducers. As the transducers
have to be excited with the same frequency they should have the same eigenfrequency. However, it is difficult
to match these two resonance frequencies of the two transducers. This can be seen easily if the stator is
modeled as a rod [6]. In such a rod the speeds for torsional and longitudinal waves are different and therefore,
the resonance frequencies are different in general.

Previous papers have proposed some methods to match the eigenfrequencies of the longitudinal transducer
and the torsional transducer such as adding a mass to the end of the stator or changing the area of cross
section of the stator, etc [7–10]. These measures can change the eigenfrequencies of these two types of
vibration and obtain good results. But there are still problems when these methods are used in practice. Not
only the stator should be fabricated many times, but also the eigenfrequency could not be adjusted any more
when the motor has been assembled. Therefore, a possibility to match the eigenfrequencies of these two types
of vibration is the key to increase the output torque and the efficiency of the hybrid piezoelectric motor.

Like for a typical hybrid piezoelectric motor, one stator and one rotor are used in the model. To obtain a
large torque, the longitudinal and tangential PZT should be placed on the node of the corresponding vibration
mode. As vibration modes the first longitudinal mode and the first torsional mode are used. In a very rough
model, the stator may be approximated by an elastic cylindrical rod. In the case of same boundary conditions,
the first eigenfrequency of the torsional vibration is always lower than that of the longitudinal vibration,
because the speed of torsional waves is slower than the speed of longitudinal waves. If the geometry of the
motor is changed, for example the length of the cylinder, both the eigenfrequency of the torsional vibration
and the eigenfrequency of the longitudinal vibration are also changed. As the speed of waves does not depend
on the diameter for a circular cross section, the ratio of the eigenfrequencies does not change with length.
However, an increasing length leads to a decrease in the first eigenfrequency.

In this paper, a new prototype of hybrid piezoelectric motor is proposed, in which two stators are used to
increase the contact area between the rotor and the stator, see Fig. 1. To match the eigenfrequencies of two
vibrations, two adjusting rings are added to the outside of two stators.

The working principle of the present motor can be illustrated by Fig. 2. The temporal phase shift is assumed
p/2. When the voltage VT applied to T-PZT reaches its peak value, the torsional displacement obtains the
maximum, while the longitudinal transducer has no deformation. Two stators are in loose contact with the
rotor (see Fig. 2a). As the voltage VL applied to L-PZT increases and reaches the peak, the longitudinal
transducer extends and two stators are in firm contact with the rotor (see Fig. 2b). At this moment, the
tangential velocity of points at the interface between rotor and stator reaches the maximum, and the rotor will
rotate undergoing the friction forces. In Fig. 2c, the torsional deformation of the stators will be along the same
direction, but the longitudinal transducer will contract and its deformation decreases to zero. Two stators are
in loose contact with the rotor again. Finally, the longitudinal transducer will continue to contract while the
torsional transducer begins to deform in reverse direction, and the rotor will separate from two stators. Due to
the inertia, the rotor will rotate in the same direction(see Fig. 2d). In such a cycle, the rotor has rotated by a
small angle. With the high frequency AC voltages excitation, a continuous rotary motion occurs in this motor.
Adjusting Ring Rotor

Stator

L-PZT T-PZT

L-Mode

T-Mode
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Fig. 1. Basic parts of the motor and vibration modes used to run the motor.
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Fig. 2. Working principle of the present piezoelectric motor.
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Compared with existing motors, this motor has a different structure and its own properties. The rotor is
placed in the middle of the motor and larger dynamical normal forces may be generated by longitudinal
vibration of opposite stators. In addition, the contact area between the rotor and the stator is two times as that
of the previous motors. This is useful to enhance the output torque of the motor. Due to the symmetric
structure, the boundary condition of longitudinal vibration and torsional vibration are different from that of
the previous motors. For the longitudinal vibration in a stator, it can be assumed that one end is free and
the other is fixed. In comparison with the longitudinal vibration, both end of the stator are free for the
torsional vibration. For the operation of the motor the first mode for torsional vibration and the first
mode for longitudinal vibration are used. It should be noticed that the phase shift of vibrations between two
stators is 1801. Besides, an adjusting ring is used in this motor. The adjusting ring fixed to each stator has
two functions. On one hand, it can support the motor and it can easily be fixed. It is worth mentioning that
the supporting position of the motor has some influence on the eigenfrequency of the motor. So this structure
is helpful for practical applications. On the other hand, the ring can be used to adjust the eigenfrequencies
of longitudinal and torsional vibration via changing the mass or position of the ring to match these two
eigenfrequencies.

Based on this prototype motor, a theoretical model is proposed to investigate the characteristics of the
motor and the operatability of the adjusting rings. A prototype motor is designed and fabricated according to
the analytical results.

2. Theoretical model

In order to analyze the eigenfrequencies of the stator and the function of the adjusting ring, the necessary
theoretical background of the electromechanical behavior is given first. Therefore, a theoretical model is
proposed in form of a cylindrical bar with an additional rigid ring. The equations of motion for longitudinal
and torsional vibration are derived. Due to the fact that in a linear analysis longitudinal vibration and
torsional vibration are uncoupled, two analytical models one for the longitudinal mode and one for the
torsional mode are derived. It should be mentioned that in this paper a ring-shaped PZT is used as
longitudinal transducer and the shear element PZT is bonded with epoxy adhesive as torsional transducer. The
physical models of these two vibrations have the same form, but the coordinate systems and the boundary
conditions are different. The direction of electric field for the L-mode PZT is the same as that of the
polarization, while the direction of electric field for the T-mode PZT is normal to that of the polarization, see
Figs. 3 and 4.
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Fig. 3. Physical model for longitudinal vibration.

Fig. 4. Physical model for torsional vibration.
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2.1. Constitutive equations

In the following the constitutive equations for the material used in the rod are given. As these equations are
well known for a pure elastic material (brass), only the constitutive equations are given for the piezoceramic
material, which excites both the longitudinal and the torsional vibrations. For each type of excitation, a
corresponding material with a special poling direction is necessary. The piezoceramic exciting the longitudinal
vibration has a poling direction in direction of the axis of the rod. The electric field generated by an electric
voltage between two electrodes is also in direction of the rod. In this case the constitutive equations read
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D3 ¼ e31S1 þ e31S2 þ e33S3 þ eS
33E3. (2)

In these equations the symbol cE
ij corresponds to the coefficients of the stiffness matrix for constant electric

field, eij to the elements of the piezoelectric matrix and eS
33 to the permittivity for constant strain. The normal

stresses are T1 to T3, the corresponding strains S1 to S3. D3 and E3 denote the electric displacement and the
electric field in axial direction, respectively.
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Assuming that in transverse direction there are no normal stresses,

T1 ¼ T2 ¼ 0, (3)

the following relations for T3 and D3 can be obtained:

T3 ¼ cE
33 �

2 cE
13

� �2
cE
11 þ cE

12

 !
S3 � e33 �

2cE
13e31

cE
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� �
E3, (4)

D3 ¼ e33 �
2cE

13e31

cE
11 þ cE

12

� �
S3 þ eS

33 þ
2e231

cE
11 þ cE

12

� �
E3. (5)

Simplifying Eqs. (4) and (5) by introducing new constants, the constitutive equations for the PZT exciting the
longitudinal mode reads

T3 ¼ c̄33S3 � ē33E3, (6)

D3 ¼ ē33S3 þ ē33E3. (7)

When the torsional vibration is analyzed, the stiffness constant cE
44 of the longitudinal PZT should be

considered. The equation of corresponding stress in tangential direction reads

T4 ¼ cE
44S4 ¼ G2S4, (8)

where G2 is the shear module of longitudinal PZT in tangential direction.
For the PZT used to excite the torsional vibration, the poling direction is in tangential direction

whereas the electric field is also in axial direction of the rod. The constitutive equations for this case can be
written as

T5 ¼ cE
55S5 � e15E1, (9)

D1 ¼ e15S5 þ eS
11E1. (10)

The symbol cE
55, e15 and eS

11 also refer to stiffness-, piezoelectric- and permittivity constants like for the
longitudinal PZT. The shear stress in tangential direction is T5, the corresponding strain S5. D1 and E1 denote
the electric displacement and the electric field in axial direction.

When the longitudinal vibration is analyzed, the stress of the torsional PZT in axial direction should also be
considered and may be written as

T1 ¼ cE
11S1 þ cE

12S2 þ cE
13S3. (11)

Taking into account the assumption T2 ¼ T3 ¼ 0 for the torsional PZT yields
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Substituting Eqs. (12) and (13) into Eq. (11) yields
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cE2

12 cE
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11 cE
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33

S1 ¼ Y 4S1, (14)

where Y4 is the Young’s modulus of the torsional PZT in axial direction.
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2.2. Modeling of the longitudinal vibration

The mathematical model for longitudinal vibration is based on the equation of motion for a one-
dimensional continuum. The balance of forces for a differential element yields

T 03ðz; tÞ � r €uðz; tÞ ¼ 0. (15)

In this equation ( )0 corresponds to a derivative with respect to the spatial coordinate and ð:Þ to a derivative
with respect to time. To derive the equation of motion for longitudinal vibration in the PZT region, the
piezoelectric Eqs. (6) and (7) are used. Besides, the vanishing divergence of the electric displacement, which in
the case of the present model reads

dD3

dz
¼ 0, (16)

is used to get an equation for the electric field E3. Substituting Eq. (16) into Eq. (7), the result for the electric
field is

E03 ¼ �
ē33

ē33
� S03, (17)

where the strain S3 in longitudinal direction is given by

S3 ¼ u0. (18)

Substituting Eqs. (6), (17) and (18) into Eq. (15) yields

ri €ui � c̄33 þ
ē233
ē33

� �
u00i ¼ 0; i ¼ 2. (19)

Similarly, in the pure elastic material and in the torsional PZT regions, the partial differential equation may be
written as

ri €ui � Y iu
00
i ¼ 0; i ¼ 1; 3; 4; 5; 6, (20)

with Young’s modulus Yi. For a time harmonic excitation with given circular frequency O, the stationary
solution is given by a time harmonic function

uiðzi; tÞ ¼ UiðziÞe
jOt, (21)

where Ui (zi) represents a function of z that defines the shape of the vibration mode. Substitution of Eq. (21)
into Eqs. (19) and (20) results in

U 00i þ
riO

2

c̄33 þ ē233=ē33
� �

 !
�Ui ¼ 0; i ¼ 2, (22)

U 00i þ
riO

2

Y i

� �
�Ui ¼ 0; i ¼ 1; 3; 4; 5; 6. (23)

Furthermore, Eqs. (22) and (23) can be simplified as

U 00i þ k2i Ui ¼ 0, (24)

with

k2i ¼
riO

2

Y i

; i ¼ 1; 3; 4; 5; 6, (25)

k2i ¼
riO

2

c̄33 þ ē233=ē33
� � ; i ¼ 2. (26)
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For Eq. (24) the solution reads

UiðzÞ ¼ C1i sin kizi þ C2i cos kizi; i ¼ 1; . . . ; 6, (27)

where C1i and C2i are integration constants which are determined by satisfying the boundary and transition
conditions at the ends of the stator and between the different regions shown in Fig. 3.

In the following it is assumed that the two electrodes of the PZT in Section 2 are connected (short-circuited)
and one end of stator is fixed and the other is free. Between the different sections the displacements and the
stresses are continuous except at the transition where the ring is fixed. The width of the ring is neglected and
the mass of the ring is considered to be a concentrated mass. Thus, the boundary and transition conditions for
the problem may be written as

U1ð0Þ ¼ 0; U 06ðl6Þ ¼ 0; UiðliÞ ¼ Uiþ1ð0Þ ði ¼ 1; . . . ; 5Þ,

Y 3U 03ðl3Þ � Y 4U
0
4ð0Þ ¼ 0; Y 4U 04ðl4Þ � Y 5U

0
5ðl5Þ ¼ 0,

Y 1U 01ðl1Þ � c̄33 þ
ē233
ē33

� �
U 02ð0Þ þ

ē233
l2ē33

U2ðl2Þ �U2ð0Þ½ � ¼ 0,

Y 3U 03ð0Þ � c̄33 þ
ē233
ē33

� �
U 02ðl2Þ þ

ē233
l5ē33

U2ðl2Þ �U2ð0Þ½ � ¼ 0,

Y 5AU 05ðl5Þ � Y 6AU 06ð0Þ ¼ mO2U6ð0Þ, ð28Þ

where A is the area of the cross section of the stator and m is the mass of the adjusting ring.
Substitution of Eq. (27) into Eq. (28) leads to a system of linear equations for the integration constants

BC ¼ r, (29)

where C ¼ (C11, C12,y, C16, C21,y, C26)
T and B is the coefficient matrix. In order to be able to solve Eq. (27),

the condition

detðBÞ ¼ 0 (30)

should be satisfied, because Eq. (30) corresponds to the characteristic equation of the eigenvalue-problem with
which the eigenfrequencies for longitudinal vibration can be determined. This can be done for example with
MAPLE or with any other program. If the excitation frequency coincides with an eigenfrequency, the
undamped system will vibrate with infinitely large amplitudes.
2.3. Modeling of torsional vibration

The mathematical model for the torsional vibration can be obtained in a similar way. The torque of an
arbitrary cross section in the stator can be written as

M ¼

Z
A

Tr dA. (31)

The balance equation for the torque yields

M 0 ¼ rIp
€f, (32)

in which Ip ¼
R

A
r2 dA represents the polar moment of inertia of the stator. The relation between the angular

displacement f and the strain in tangential direction is given by

S ¼ rf0. (33)

Substitution of Eq. (33) and of the constitutive equation into Eq. (32) leads to the partial differential equation
for the pure elastic material and for the longitudinal PZT regions

ri
€fi � Gif

00
i ¼ 0; i ¼ 1; 2; 3; 5; 6. (34)
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For the torsional PZT region, from

dD1

dz
¼ 0, (35)

it follows

D01 ¼ cE
15S05 þ eS

11E01 ¼ 0 (36)

and therefore

E01 ¼ �
e15

eS
11

S05, (37)

so that

T 05 ¼ cE
55S05 � e15E01 (38)

leads to

T 05 ¼ cE
55 þ

e215
eS
11

� �
S05 ¼ cE

55 þ
e215
eS
11

� �
rf00. (39)

Considering Eqs. (32) and (39 ), the partial differential equation for the torsional PZT is obtained

ri
€fi � cE

55 þ
e215
eS
11

� �
f00i ¼ 0; i ¼ 4. (40)

Like for longitudinal vibration the stationary solution is also given by a time harmonic function

fiðzi; tÞ ¼ FiðziÞe
jOt, (41)

where Fi (zi) represents a function of z that defines the shape of the natural mode of vibration. The symbol O is
the circular frequency. Substitution of Eq. (41) into Eqs. (34) and (40) results in

F00t þ
riO

2

Gi

� �
� Fi ¼ 0; i ¼ 1; 2; 3; 5; 6, (42)

F00i þ
riO

2

cE
55 þ e215=e

S
11

� �
 !

� Fi ¼ 0; i ¼ 4. (43)

Furthermore, Eqs. (42) and (43) can be simplified as

F00i þ l2i Fi ¼ 0, (44)

where

l2i ¼
riO

2

Gi

; i ¼ 1; 2; 3; 5; 6, (45)

l2i ¼
riO

2

cE
55 þ e215=e

S
11

� � ; i ¼ 4. (46)

For Eq. (44), the solution reads

FiðzÞ ¼ C1i sin lizi þ C2i cos lizi; i ¼ 1; . . . ; 6, (47)

where C1i and C2i are the constants which are determined by satisfying the boundary and transition conditions
at the ends and between the different regions of the stator.
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As the longitudinal and torsional PZT are short-circuited and both ends of the stator are free in the case of
the torsional vibration, the boundary and transition conditions for this problem may be written as

F01ð0Þ ¼ 0; F06ðl6Þ ¼ 0; FiðliÞ ¼ Fiþ1ð0Þ; i ¼ 1; . . . ; 5,

G3F03ðl3Þ � cE
55 þ

e215
eS
11

� �
F04ð0Þ þ

e215
l4eS

11

F4ðl4Þ � F4ð0Þ½ � ¼ 0,

G5F05ð0Þ � cE
55 þ

e215
eS
11

� �
F04ðl4Þ þ

e215
l4eS

11

F4ðl4Þ � F4ð0Þ½ � ¼ 0,

G1F01ðl1Þ � G2F02ð0Þ ¼ 0; G2F02ðl2Þ � G3F03ð0Þ ¼ 0,

G5IpF05ðl5Þ � G6IpF06ð0Þ ¼ JO2F6ð0Þ, ð48Þ

where

Ip ¼
p
32

d4
2 � d4

1

� �
, (49)

J ¼
par
32

d4
3 � d4

2

� �
. (50)

Substitution of Eq. (47) in Eq. (48) reads

BC ¼ r, (51)

where C ¼ (C11, C12,y, C16, C21,y, C26)
T and B is the coefficient matrix. Like before, the condition

detðBÞ ¼ 0 (52)

allows to compute the eigenfrequencies for torsional vibration.
Fig. 5. FE model for vibration analysis.
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3. Results and discussions

The properties of the motor such as the eigenfrequencies of longitudinal and torsional vibrations
may be analyzed via the analytical model. To obtain the optimized geometry of the stator and to
analyze the vibration mode in more detail also an FE model is proposed (see Fig. 5). For the solution of the
FE model the commercial software ANSYS is used. The material parameters for both models are given
in Table 1.

A prototype of the present motor requests that the mode for the longitudinal vibration is the first mode and
that for the torsional vibration is also the first mode. The symmetrical structure of the motor is supposed to
produce the maximum torque if the stators operate in the range between two resonance frequencies of
longitudinal and torsional vibration.
Table 1

Material parameters of the motor used in the models

Material parameters PIC181 PIC255 Cu

r (kg/m3) 7.85E+03 7.76E+03 8.4E+03

eS
11

740 870

eS
33

624 680

e31 (N/Vm) �4.5 �5.6

e33 (N/Vm) 14.7 12.8

e15 (N/Vm) 11.0 10.3

cE
11 (N/m2) 1.523E+11 1.108E+11

cE
33 (N/m2) 1.314E+11 1.108E+11

cE
55 (N/m2) 2.830E+10 1.909E+10

cE
12 (N/m2) 8.909E+10 6.326E+10

cE
13 (N/m2) 8.547E+10 6.896E+10

cE
44 (N/m2) 2.830E+10 1.909E+10

cE
66 (N/m2) 3.161E+10 2.383E+10

Y 1.1E+11

n 0.3

Fig. 6. Eigenfrequencies of longitudinal and torsional vibrations for the stator without ring.
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To investigate the function of the ring, the eigenfrequencies of longitudinal and torsional vibrations are
calculated by the analytical model without rings at first. Thereafter, for the goal of matching the
eigenfrequencies, two cases are considered: one is to change the mass of the ring and the other to change the
position of the ring. The results are obtained by the analytical model and FE model.

Fig. 6 shows the first eigenfrequencies of longitudinal vibration and torsional vibration for the stator
without ring. The difference of the eigenfrequencies of the stator between these two types of vibrations is
about 5 kHz.

From Fig. 7 it is obvious that the first eigenfrequency of torsional vibration for the stator with a ring is
decreased, while the first eigenfrequency of longitudinal vibration only changes slightly. Thus the two
eigenfrequencies of the stator get closer together. The difference of these two eigenfrequencies is reduced to
about 0.2 kHz. Therefore to use a ring is useful to match the eigenfrequencies of two vibration modes.
Fig. 7. Eigenfrequencies of longitudinal and torsional vibrations for the stator with a ring.

Fig. 8. Eigenfrequencies for changing mass of the ring using FE model.
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Fig. 9. Eigenfrequencies for changing mass of the ring using analytical model.

Fig. 10. Eigenfrequencies for changing position of the ring using FE model.
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Figs. 8 and 9 show that the eigenfrequencies of longitudinal vibration decrease slightly with an increase of
the mass of the ring. This is due to the well-known fact that the eigenfrequency is in counter proportion with
the mass. The eigenfrequencies of both vibrations have the same tendency when the mass of the ring is
changed. Therefore, it is not possible to obtain better effect of matching the eigenfrequencies only via changing
the mass of the ring.

Figs. 10 and 11 show that when the position of the ring changes, the eigenfrequency of the longitudinal
vibration only changes slightly, while the eigenfrequency of the torsional vibration has a greater change. When
the ring is fixed to the anti-node of the torsional vibration, especially to the end of the stator, the decreasing
value of the torsional eigenfrequency reaches the maximum. Obviously, this characteristic can be used to
match the eigenfrequencies of longitudinal and torsional vibration by changing the position of the ring.
Besides, the results of the theoretical model agree well with those of the FE model.
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Fig. 11. Eigenfrequencies for changing position of the ring using analytical model.

Fig. 12. The prototype of the present piezoelectric motor.

Y. Yi et al. / Journal of Sound and Vibration 295 (2006) 856–869868
According to the analytical results, the resonant frequency of both vibrations is 20.5 kHz. The geometries of
the motor l1 ¼ 4.5mm, l2 ¼ 4mm, l3 ¼ 5mm, l4 ¼ 4mm, l5 ¼ 19.5mm, l6 ¼ 4mm, d1 ¼ 15mm, d2 ¼ 40mm,
d3 ¼ 60mm, a ¼ 4mm and b ¼ 4mm are obtained by the theoretical model. The prototype of the motor is
finally fabricated (see Fig. 12).
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4. Conclusions

The hybrid piezoelectric motor studied in this paper uses two stators, one rotor and two adjusting rings.
The analysis via an analytical model and FE model show that the design of motor using this symmetrical
structure is helpful to match the eigenfrequencies of longitudinal and torsional vibration. When a ring is
added to the stator, the torsional eigenfrequency changes much more than that of the longitudinal vibration.
The eigenfrequencies of two vibrations are not sensible to the mass of the ring, but sensible to the position of
the ring.

The eigenfrequencies of longitudinal and torsional vibrations can be matched through changing the position
of the adjusting ring and the working frequency of the motor can be obtained. When the motor operates at the
coinciding eigenfrequency of longitudinal and torsional vibrations, while the counter-phase mode of the
stators are used as well, the motor will gain the maximum torque.
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